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Abstract

We analyze a previously unexplored generalization of the
scalar total variation to vector-valued functions, which is
motivated by geometric measure theory. A complete math-
ematical characterization is given, which proves important
invariance properties as well as existence of solutions of
the vectorial ROF model. As an important feature, there
exists a dual formulation for the proposed vectorial total
variation, which leads to a fast and stable minimization al-
gorithm. The main difference to previous approaches with
similar properties is that we penalize across a common edge
direction for all channels, which is a major theoretical ad-
vantage. Experiments show that this leads to a significiantly
better restoration of color edges in practice.

1. Introduction

Regularity is of central importance in computer vi-
sion. Many problems, like denoising, deblurring, super-
resolution and inpainting, are ill-posed, and require the
choice of a good prior in order to arrive at sensible solu-
tions. This prior often takes the form of a regularization
term for an energy functional which is to be minimized.
For optimization purposes, it is important that the regu-
larizer is convex, since only then one can hope to always
find a global optimum of the energy within reasonable time.
Furthermore, images in the real-world can be observed to
generally be piecewise smooth. For these reasons, the total
variation (TV) of a function has emerged as a very success-
ful regularizer for a wide range of applications. It is convex,
but still discontinuity-preserving, as it assigns the same cost
to sharp and smooth transitions.

While most existing work focuses on scalar valued func-
tions, the generalization to vector valued (color or multi-
channel) images remains an important challenge. In this
paper, we will see that this generalization is by no means
straightforward, but that a very natural one can be obtained
by considering the mathematical framework of geometric
measure theory.
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Figure 1: For inverse problems like denoising, inpainting or
superresolution the total variation is among the most pow-
erful regularizers. We propose a novel generalization of to-
tal variation to vector-valued images which naturally arises
in the context of geometric measure theory.

Vectorial TV.
For a greyscale image modeled as a differentiable func-

tion u : Ω → R on a domain Ω ⊂ Rm, the scalar total
variation TV(u) is defined as the integral over the Euclidean
norm |·|2 of the gradient,

TV(u) =
∫

Ω

|∇u|2 dx. (1)

The definition can be extended to locally integrable func-
tions u ∈ L1

loc(Ω,R) using a dual formulation: Let Em de-
note the closed unit ball in Rm, then

TV(u) = sup
ξ∈C1c (Ω,Em)

{∫
Ω

u div(ξ) dx
}
. (2)

Note that the right-hand side makes sense for non-
differentiable u, as derivatives are taken only of the dual
vector fields ξ.

The idea of vectorial total variation is to extend the above
definition to vector-valued u : Ω → Rn, such that in the
case n = 1 both definitions coincide. Several variants have
been proposed, which will be discussed in Section 2.

An important criterion for a good regularizer is that ef-
ficient and reliable minimization algorithms are available.
For the scalar TV, such methods have been developed based
on the dual formulation, pioneered by Chan et al. [7]. The
more recent algorithm by Chambolle [6] allows to handle
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the non-differentiability of |·|2 without need to regularize,
so one can solve the exact model. In view of this, a use-
ful generalization of scalar to vectorial TV should have a
similar dual formulation available.

Contributions.
In this work, we analyze a previously unexplored vari-

ant of vectorial TV which is based on geometric measure
theory. With regard to this mathematical framework, our
approach is probably the most natural generalization of the
scalar case. We present an in-depth mathematical charac-
terization, which is sufficient to prove the existence and
uniqueness of solutions for the vectorial ROF model. The
norm has all important invariance properties. We derive a
dual definition, which gives rise to an efficient optimization
algorithm. Furthermore, we can show that denoising using
the new regularizer leads to improved restoration of color
edges. Since the regularizer can be used as a substitute for
vectorial TV in any energy functional, there is a broad spec-
trum of further applications, see e.g. [3, 9, 13, 20, 22].

2. Related Work
Previous approaches to define total variation for vector-

valued functions can roughly be divided into two classes.
The first class of approaches computes the total variation
channel-by-channel, and takes a suitable norm of the re-
sulting vector. The second class of approaches integrates a
pointwise function of the derivative ofu, and emerges when
considering the Riemann geometry of the image manifold.

Channel-by-channel, l1-norm.
Probably the most simple and straightforward way to

deal with multidimensional TV is to sum up the contribu-
tions of the separate channels [2]. This leads to the defini-
tion

TVS(u) :=
n∑
i=1

TV(ui). (3)

The dual formulation follows immediately from (2),

TVS(u) = sup
(ξ1,...,ξn)∈KS

{
n∑
i=1

∫
Ω

ui div(ξi) dx

}
with KS = C1

c (Ω,Em × · · · × Em).

(4)

The dual optimization technique of this method is a straight-
forward generalization of [6], fast, robust and easy to imple-
ment. However, since there is no coupling between chan-
nels, there is no preservation of color edges and significant
color smearing, as we will se in the experiments. Also, there
is no rotational invariance in color space. The norm has for
example been used in TV-L1 optic flow models [22], where
artifacts are not immediately visible as in color image de-
noising.

Channel-by-channel, Euclidean norm.
Blomgren and Chan [4] define multi-dimensional TV as

the Euclidean norm of the vector of channel-wise scalar TV.

TVBC(u) :=

√√√√ n∑
i=1

TV(ui)2. (5)

From the Euler-Lagrange equations of this norm,

TV(ui)
TVBC(u)

div
( ∇ui
|∇ui|2

)
= 0 for all 1 ≤ i ≤ n, (6)

one can observe that there is a coupling of channels, but it
is global, i.e. the same per-channel weight is used for all
image pixels. Although the authors demonstrated that it has
quite a few desireable properties, there is no dual formu-
lation available. Thus, there is no efficient and exact mini-
mization algorithm, since a regularization is required for the
denominator of (6).

Riemann Geometry.
In [8], di Zenzo suggests to consider a vector-valued im-

age as a parameterized 2-dimensional Riemann manifold in
nD-space. The metric tensor of this manifold is given by

gµν = (∂µu, ∂νu), µ, ν = 1, 2. (7)

This is analogous to the structure tensor of an image, and
the Eigenvector corresponding to the smaller Eigenvalue
gives the direction of the vectorial edge. Several variants
of anisotropic and edge-enhancing diffusion for color im-
ages have been developed using this formulation [18, 21],
but in general the diffusion process does not arise as the
minimizing flow of an energy.

Based on this framework, Sapiro [16, 17] suggests a
familiy of possible definitions for the vectorial TV, which
is of the form

TVSR(u) :=
∫

Σ

f(λ+, λ−) ds, (8)

where λ± denote the larger and smaller Eigenvalue of
(gµν), respectively, and f is a suitable scalar-valued func-
tion. It must be noted that TVSR is in general only de-
fined for differentiable functions, only for special cases are
dual formulations available to extend it to locally integrable
functions.

Another approach based on Riemann geometry was pio-
neered by Sochen et al. [19]. It considers the graph of the
image as a surface in R2 × Rn, and minimizes the surface
area in order to smoothe the image. This approach leads
to a diffusion equation with the direction given by the Bel-
trami flow. It is possible to derive a dual formulation in the
case of grayscale images [5], however no such dualization
is known in the vectorial case.



Pointwise Frobenius Norm.
A special case of the Sapiro-Ringach TV (8) is the choice

f(λ±) =
√
λ+ + λ−, i.e. the Frobenius norm of the

derivative Du,

TVF (u) :=
∫

Ω

‖Du(x)‖F dx. (9)

It is remarkable because there is a convenient dual formu-
lation, which extends the definition from differentiable to
locally integrable functions,

TVF (u) = sup
(ξ1,...,ξn)∈KF

{
n∑
i=1

∫
Ω

ui div(ξi) dx

}
with KF = C1

c (Ω,En·m).

(10)

This dual formulation is a natural generalization in view of
the dual formulation for single-channel TV. Notably, defini-
tions (10) and (4) are equivalent in the sense that they lead to
the same space BV(Ω,Rn). However, the actual results in
image processing algorithms are quite different, since there
is no correlation of channels in TVS , in constrast to TVF ,
which has a desireable coupling of channels. In books, both
definitions appear depending on the preference of the au-
thors [1, 2].

Efficient minimization techniques for functionals based
on (10) have been intensively studied by Bresson and
Chan [5] as well as Duval et al. [10]. Because of its good
performance, TVF has emerged as a favourite candidate for
vectorial TV, and it is often referred to as the vectorial to-
tal variation, although it is only a single one in the large
family (8) proposed by Sapiro and Ringach.

However, it was already noted by Blomgren and
Chan [4] that TVF has some less-than-ideal properties. In
particular, it actually favors grey value images over colored
ones, which leads to color smearing for example in denois-
ing applications. That the coupling of channels is not op-
timal can also be seen in the dual formulation. While the
edge strength is correctly weighted over all channels such
that common edges are not overly penalized, the edge di-
rections can be different for the different channels.

3. Vectorial Total Variation
In the following, we will propose a novel generalization

of TV to vector-valued functions which emerges naturally
in the light of geometric measure theory. The resulting vec-
torial TV approach supports a common edge direction for
all channels, comprises important invariance properties and
comes with a dual formulation that allows for stable and
exact minimization schemes.

Definition.
Geometric measure theory [11] studies geometric prop-

erties of the measures of sets, for example arc length and

area. One of its important concepts is the notion of a Jaco-
bian Jk, a generalization of the Jacobian determinant to the
case k ≤ n. We will only require the case k = 1, which
we are going to explain in the following. For a scalar val-
ued differentiable function u, we have J1u = |∇u|2. Thus,
it is natural to define the total variation of a vector-valued
function u : Ω→ Rn as the integral

TVJ(u) :=
∫

Ω

J1u dx. (11)

The precise meaning is made clear by the following propo-
sition.

Proposition 3.1. For functions u ∈ C1(Ω,Rn), the vecto-
rial total variation equals the integral over the largest sin-
gular value of the derivative matrix,

TVJ(u) =
∫

Ω

σ1(Du) dx. (12)

In particular, TVJ is equal to the standard total variation
for real-valued functions.

Proof. See appendix.

Interestingly, although the motivation for our model
comes from a completely different direction, Proposi-
tion 3.1 shows an intimate relationship of our model to the
Sapiro-Ringach approach [18]. To see this, note that the
metric tensor of the image manifold is equal to (gµν) =
(Du)TDu, in particular σ1(Du) =

√
λ+. Thus, TVJ is

a special case of (8), similar to the model TVF . However,
from the new context, we can derive a dual formulation for
TVJ , which leads to a very efficient optimization method
for the proposed regularizer. Furthermore, it allows to ex-
tend the definition to non-differentiable functions, which is
not possible in the Sapiro-Ringach formulation.

Proposition 3.2. On C1(Ω,Rn), the vectorial total varia-
tion can be expressed as

TVJ(u) = sup
(ξ,η)∈KJ

{
n∑
i=1

∫
Ω

ui div(ηiξ) dx

}
with KJ =C1

c (Ω,Em × En).

(13)

The right hand side is well defined for all u ∈ L1
loc(Ω,Rn).

Proof. Follows from the representation (17) for J1u and
the Gaussian divergence theorem.

Because σ1(·) and ‖·‖F are equivalent norms on Rn×m,
TVJ leads to the same space BV(Ω,Rn) of functions of
bounded vectorial TV.

Convexity and lower semi-continuity.
We now investigate the mathematical properties of

TVJ(u). The first observation shows that our definition re-
tains important basic properties of the total variation.



Setup scalar fieldsui := fi, ηi := fi

|f |2 for
1 ≤ i ≤ n, and ξj = 0 for 1 ≤ j ≤ m,
respectively. Then iterate until convergence:

Primal update
ui ← fi + λdiv (ηiξ) for all 1 ≤ i ≤ n

Dual gradient ascent in η and ξ

ηi ←ηi + τξ · ∇ui for all 1 ≤ i ≤ n

ξ ←ξ + τ
n∑

i=1

ηi∇ui

Reprojection of (ξ,η) onto KJ

η ← η

|η|2
andξ ← ξ

|ξ|2
Figure 2: Primal-dual algorithm for solving the TVJ -L2

model.

Proposition 3.3. TVJ : BV(Ω,Rn) → R is a semi-norm,
in particular it is convex. Furthermore, it is lower semi-
continuous with respect to the weak topology.

Proof. See appendix.

Relations to other norms.
L1-regularity was shown to be superior to L2-

regularization because deviations from the constant case are
less heavily penalized. This preservation of structures lead
to the celebrated results in structure-preserving denoising.
Similarly the proposed vectorial TV is superior to existing
vectorial TV approaches because deviations are less penal-
ized. In particular, one can show that the proposed regular-
izer is systematically smaller than existing ones such that a
better preservation of relevant structures is guaranteed, see
Figure 3.

Proposition 3.4. For all u ∈ BV(Ω,Rn),

TVJ(u) ≤ TVF (u) ≤ TVS(u). (14)

Proof. The first inequality follows directly from the primal
definition because

√
λ+ ≤

√
λ+ + λ−. The second in-

equality follows from the primal-dual formulation, because
the set of dual variables considered in TVS includes and is
strictly larger than the set considered in TVF (and also than
that in TVJ ).

Invariance properties.
We show that TVJ(u) is invariant with respect to both

affine transformations in image space as well as orthogonal
transformations in color space. Those important properties
are not shared by all variants of the vectorial TV, see Blom-
gren and Chan [4] for an analysis. The first proposition
shows that TVJ is invariant under affine reparametrizations
of Ω.

Proposition 3.5. Let Ω′ ⊂ Rm and A : Ω′ → Ω be affine
and onto. Then for any u ∈ L1

loc(Ω,Rn),

TVJ(u ◦A) = TVJ(u).

Proof. Follows from representation (13) and the integral
transformation formula.

Furthermore, TVJ(u) is invariant under isometries of
the color space Rn. Note that this is incorrect for most vari-
ants of vectorial TV, a notable exception being TVF .

Proposition 3.6. Let T : Rn → Rn be an isometry with
respect to the Euclidean norm. Then

TVJ(Tu) = TVJ(u).

Proof. Follows from the representation (17), note that
D(Tu)(ej) = T · Du(ej) and T maps the unit sphere in
Rn onto itself.

Euler-Lagrange equations.
Of particular importance in many applications are the

Euler-Lagrange equations of the functional TVJ . Formally,
if one takes σ1 as a function on Rn×m, one obtains a system
of n partial differential equations, see e.g. [12]:

div

 m∑
j=1

∂ijσ1(Du) ∂jui

 = 0, i = 1, . . . , n. (15)

Unfortunately, as with |·|2, there are points where σ1 is
not differentiable, which means that one has to take a suit-
able regularization. Computationally, it is feasible only for
m ≤ 2, as then there is an explicit formula for the singular
values [18]. Furthermore, the Euler-Lagrange equations are
relatively expensive to evaluate, since one needs to compute
the derivative of σ1 with respect to all components of the Ja-
cobian. It is thus fortunate that there is a fast algorithm to
minimize the TVJ -L2 denoising model based on the dual
expression (13), which is analyzed in the next section.

4. The TVJ -L2 Model
The ROF model, named after Rudin, Osher and Fatemi

who introduced it in [15], is a very successful approach to
image denoising, designed to restore an image which was
contaminated by Gaussian noise. With the vectorial TV,
it can easily be generalized to vector-valued images. This
leads to the TVJ -L2 model for denoising, which is to solve
for a given noisy image f ∈ L2(Ω,Rn) the minimization
problem

argmin
u∈BV(Ω,Rn)

{
TVJ(u) +

1
2λ
‖u− f‖22

}
. (16)



Noisy TVS TVF TVJ Original

22.57 23.89 24.12

23.31 24.21 24.54

19.73 20.72 20.99

16.98 17.79 17.98

17.76 19.25 19.43

21.67 23.11 23.48

Figure 3: Denoising results for input images with additive Gaussian noise, standard deviation σ = 0.2. For each method, the
value of λ which gave the best results was determined experimentally. The PSNR for each result is noted below the image.
Although PSNR is only marginally better for TVJ compared to TVF , the visual quality is significiantly improved. TVS is
clearly inferior to both because of strong color smearing.



Blurred and noisy Result Original

Figure 4: Deblurring using TVJ . Colors are reproduced
correctly in the result, and sharp edges are restored.

λ > 0 is a constant controlling the desired smoothness of
the result - the larger, the greater the influence of the regu-
larizer.

Existence and uniqueness of solutions.
Denote the (componentwise) mean of a function u on Ω

by uΩ := 1
|Ω|
∫

Ω
u dx. We can then prove

Theorem 4.1. Problem (16) admits a unique solution ū
which has the same mean as f .

Proof. We give the basic ideas of the proof and refer the
reader to [10] for more details. The energy is strictly con-
vex as a sum of the convex TVJ seminorm, see Propo-
sition (3.3), and the strictly convex norm of the L2-
Hilbertspace. Thus, what remains to be shown is existence
of a solution on the space

Vf := {u ∈ L2(Ω,Rn) : uΩ = fΩ}.
We already know that the energy is lower semi-continuous
on Vf , Proposition (3.3). In addition, the energy is coercive
on Vf : from the Poincare-inequality we have

‖u− fΩ‖2 = ‖u− uΩ‖2 ≤ C · TVJ(u)

with a constant C > 0. Lower semi-continuity and coer-
civity imply the existence of a minimum ū in Vf . Since the
constant function fΩ is of bounded variation and fΩ ∈ Vf ,
it follows that ū ∈ BV(Ω,Rn).

Efficient minimization.
The dual formulation of TVJ leads to a primal-dual

optimization algorithm which is detailed in Figure 2. It
can be derived in a similar way as the algorithm in [14].
The primal update and dual gradient ascent follow directly
from the Euler-Lagrange equations for ui, ηi and ξ, re-
spectively, while the reprojection steps ensure that (η, ξ)
remains inKJ . We found experimentally that the algorithm
remains stable for τ = 1/8, see also [6].

5. Experimental Results
We tested the vectorial ROF model with three different

regularizers on dozens of images. The favourite alterna-
tive candidate to TVJ is TVF for the reasons described

above, but for comparison we also included TVS . Results
are displayed in Figure 3. As expected, TVS performs sig-
nificantly worse than the other two, since there is no cou-
pling of channels and significant smearing of colors. As
previously observed by Blomgren and Chan [4], TVF also
exhibits a tendency to smear colors across edges, but it is
less pronounced. The visually best results are achieved
with TVJ . Since all color channels share a common edge
direction, color edges are preserved and no color degrada-
tion can be observed.

To demonstrate some examples of additional applica-
tions for the regularizer, we also implemented vectorial
versions of TV-deblurring [9] and TV-based superresolu-
tion [13]. Results are displayed in Figure 4 and Figure 5,
respectively. One can again note that TVJ reproduces sharp
color edges correctly without smearing colors.

6. Conclusion
In summary, we have explored a novel formulation for

vectorial TV based on geometric measure theory. The for-
mulation using this powerful framework yields a lot of addi-
tional theorems, which can be leveraged in future research.
Interestingly, TVJ is also a special case of the family of
norms proposed by Sapiro, which after TVF makes it the
second one for which a dual formulation is available. Thus,
TVJ not only allows discontinuous solutions, it also gives
rise to an efficient and stable minimization algorithm for
the vectorial ROF model. Denoising results are superior in
that color edges are preserved much better, and since TVJ
can serve as a regularizer in any energy functional, there is a
host of additional applications for it, which will be explored
in the future.
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Appendix

Proof of Proposition 3.1. We show how to compute J1u:

J1u = ‖∧1Du‖
= sup
ξ∈Em

{ |(∧1Du) (ξ1e1 + · · ·+ ξmem)|
2

}
= sup

(ξ,η)∈Em×En


m∑
j=1

ξj(Du(ej),η)


= sup

(ξ,η)∈Em×En


n∑
i=1

ηi

m∑
j=1

ξj∂jui


= sup

(ξ,η)∈Em×En

{
n∑
i=1

ηi (ξ · ∇ui)
}

= sup
(ξ,η)∈Em×En

{
n∑
i=1

ηTDu · ξ
}

(17)

The claim follows now from the singular value decomposi-
tion of Du. �

Proof of Proposition 3.3. Semi-norm properties follow
immediately since J1 is a norm. To show lower semi-
continuity, take a sequence un converging to u in weak
topology. In particular, for each η, ξ and each 1 ≤ i ≤ n
we have

lim
n→∞ 〈u

n
i , div(ηiξ)〉 = 〈ui, div(ηiξ)〉 .

Thus,

lim inf
n→∞ TVJ(un)

= lim inf
n→∞

{
sup

(ξ,η)∈KJ

∑∫
Ω

uni div(ηiξ) dx

}

≥ sup
(ξ,η)∈KJ

{
lim inf
n→∞

∑∫
Ω

uni div(ηiξ) dx
}

= sup
(ξ,η)∈KJ

∑∫
Ω

uidiv(ηiξ) dx

=TVJ(u).

This completes the proof. �


